
Failure is Not an Option
The Curry-Howard-Shadok correspondence

Pierre-Marie Pédrot
joint work with Nicolas Tabareau

Max Planck Institute for Software Systems

Séminaire PPS

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 1 / 44

It’s time to CIC ass and chew bubble-gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 3 / 44

It’s time to CIC ass and chew bubble-gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 3 / 44

It’s time to CIC ass and chew bubble-gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 3 / 44

It’s time to CIC ass and chew bubble-gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 3 / 44

Un Coq qui fait de l'effet

My research has been focussed on the extension of CIC with side-effects.

To Program More!
Obviously you want effects to program
E.g. state, exceptions, non-termination, continuations...

To Prove More!
A well-known fact here at PPS
Curry-Howard ⊢ side-effects ⇔ new axioms
Archetypical example: callcc and classical logic (Griffin, Krivine)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 4 / 44

Un Coq qui fait de l'effet

My research has been focussed on the extension of CIC with side-effects.

To Program More!
Obviously you want effects to program
E.g. state, exceptions, non-termination, continuations...

To Prove More!
A well-known fact here at PPS
Curry-Howard ⊢ side-effects ⇔ new axioms
Archetypical example: callcc and classical logic (Griffin, Krivine)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 4 / 44

Un Coq qui fait de l'effet

My research has been focussed on the extension of CIC with side-effects.

To Program More!
Obviously you want effects to program
E.g. state, exceptions, non-termination, continuations...

To Prove More!
A well-known fact here at PPS
Curry-Howard ⊢ side-effects ⇔ new axioms
Archetypical example: callcc and classical logic (Griffin, Krivine)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 4 / 44

Summary of the Previous Episodes

We already gave two instances of effectful variants of CIC.

Forcing (LICS 2016)

Bread and butter categorical model factory
« Forcing: retour de l’être aimé – permis de conduire – désenvoûtement. »
Computationally: a glorified monotonous reader monad

Weaning (LICS 2017)

A generic construction adding effects
Handles a rather wide class of monads
Somehow dual to forcing

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 5 / 44

Summary of the Previous Episodes

We already gave two instances of effectful variants of CIC.

Forcing (LICS 2016)

Bread and butter categorical model factory
« Forcing: retour de l’être aimé – permis de conduire – désenvoûtement. »
Computationally: a glorified monotonous reader monad

Weaning (LICS 2017)

A generic construction adding effects
Handles a rather wide class of monads
Somehow dual to forcing

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 5 / 44

Summary of the Previous Episodes

We already gave two instances of effectful variants of CIC.

Forcing (LICS 2016)

Bread and butter categorical model factory
« Forcing: retour de l’être aimé – permis de conduire – désenvoûtement. »
Computationally: a glorified monotonous reader monad

Weaning (LICS 2017)

A generic construction adding effects
Handles a rather wide class of monads
Somehow dual to forcing

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 5 / 44

You Can’t Have Your Cake and Eat It

Effects make reduction strategies relevant.

Call-by-value Call-by-name

/ Weaker conversion rule
, Full dependent elimination
, Good old ML semantics

, Full conversion rule
/ Weaker dependent elimination
/ Strange PL realm

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 6 / 44

You Can’t Have Your Cake and Eat It

Effects make reduction strategies relevant.
Call-by-value Call-by-name

/ Weaker conversion rule
, Full dependent elimination
, Good old ML semantics

, Full conversion rule
/ Weaker dependent elimination
/ Strange PL realm

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 6 / 44

Last Propaganda Slide: A Flurry of Buzzwords

Recall that dependent elimination for booleans amounts to

Γ ⊢ M : B Γ ⊢ N1 : P{true} Γ ⊢ N2 : P{false}
Γ ⊢ if M then N1 else N2 : P{M}

We proposed a generic restriction for effectful CBN dependent elimination.

P must be linear (∼= CBV / algebra hom.)

Generalizes Krivine’s storage operators
If you weren’t at my Geocal-LAC talk, tant pis pour vous
Towards a Linear Dependent {Big Data, Machine Learning, IoT}

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 7 / 44

Last Propaganda Slide: A Flurry of Buzzwords

Recall that dependent elimination for booleans amounts to

Γ ⊢ M : B Γ ⊢ N1 : P{true} Γ ⊢ N2 : P{false}
Γ ⊢ if M then N1 else N2 : P{M}

We proposed a generic restriction for effectful CBN dependent elimination.

P must be linear (∼= CBV / algebra hom.)

Generalizes Krivine’s storage operators
If you weren’t at my Geocal-LAC talk, tant pis pour vous
Towards a Linear Dependent {Big Data, Machine Learning, IoT}

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 7 / 44

Shameless Propaganda

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 8 / 44

Part I
An extension of CIC rooted in Shadok wisdom.

“The more it fails, the more likely it will eventually succeed.”

☺ Add a failure mechanism to CIC
☺ Fully computational exceptions
☺ Features full conversion
☺ Features full dependent elimination
😕 Didn’t I just say this was not possible???

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 9 / 44

Part I
An extension of CIC rooted in Shadok wisdom.

“The more it fails, the more likely it will eventually succeed.”

☺ Add a failure mechanism to CIC
☺ Fully computational exceptions
☺ Features full conversion
☺ Features full dependent elimination

😕 Didn’t I just say this was not possible???

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 9 / 44

Part I
An extension of CIC rooted in Shadok wisdom.

“The more it fails, the more likely it will eventually succeed.”

☺ Add a failure mechanism to CIC
☺ Fully computational exceptions
☺ Features full conversion
☺ Features full dependent elimination
😕 Didn’t I just say this was not possible???

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 9 / 44

Part I
An extension of CIC rooted in Shadok wisdom.

“The more it fails, the more likely it will eventually succeed.”

☺ Add a failure mechanism to CIC
☺ Fully computational exceptions
☺ Features full conversion
☺ Features full dependent elimination
😕 Didn’t I just say this was not possible???

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 9 / 44

The Exceptional Type Theory: Overview

The exceptional type theory extends vanilla CIC with

E : □
raise : ΠA : □.E → A

As hinted before, we need to be call-by-name to feature full conversion.
raise (Πx : A.B) e ≡ λx : A. raise B e
match (raise I e) ret P with p⃗ ≡ raise (P (raise I e)) e

where P : I → □.

Remark that in call-by-name, if M : A → B, in general
M (raise A e) ̸≡ raise B e

for otherwise we would not have (λx : A.M) N ≡ M{x := N}.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 10 / 44

The Exceptional Type Theory: Overview

The exceptional type theory extends vanilla CIC with

E : □
raise : ΠA : □.E → A

As hinted before, we need to be call-by-name to feature full conversion.
raise (Πx : A.B) e ≡ λx : A. raise B e
match (raise I e) ret P with p⃗ ≡ raise (P (raise I e)) e

where P : I → □.

Remark that in call-by-name, if M : A → B, in general
M (raise A e) ̸≡ raise B e

for otherwise we would not have (λx : A.M) N ≡ M{x := N}.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 10 / 44

The Exceptional Type Theory: Overview

The exceptional type theory extends vanilla CIC with

E : □
raise : ΠA : □.E → A

As hinted before, we need to be call-by-name to feature full conversion.
raise (Πx : A.B) e ≡ λx : A. raise B e
match (raise I e) ret P with p⃗ ≡ raise (P (raise I e)) e

where P : I → □.

Remark that in call-by-name, if M : A → B, in general
M (raise A e) ̸≡ raise B e

for otherwise we would not have (λx : A.M) N ≡ M{x := N}.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 10 / 44

Catch Me If You Can
Remember that on functions:

raise (Πx : A.B) e ≡ λx : A. raise B e

It means catching exceptions is limited to positive datatypes!

For inductive types, this is a generalized induction principle.

catchB : ΠP : B → □.
P true →
P false →
(Πe : E.P (raise B e)) →

Πb : B.P b

Brect : ΠP : B → □.
P true →
P false →

Πb : B.P b

where
catchB P pt pf pe true ≡ pt
catchB P pt pf pe false ≡ pf
catchB P pt pf pe (raise B e) ≡ pe e

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 11 / 44

Catch Me If You Can
Remember that on functions:

raise (Πx : A.B) e ≡ λx : A. raise B e

It means catching exceptions is limited to positive datatypes!

For inductive types, this is a generalized induction principle.

catchB : ΠP : B → □.
P true →
P false →
(Πe : E.P (raise B e)) →

Πb : B.P b

Brect : ΠP : B → □.
P true →
P false →

Πb : B.P b

where
catchB P pt pf pe true ≡ pt
catchB P pt pf pe false ≡ pf
catchB P pt pf pe (raise B e) ≡ pe e

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 11 / 44

Mot d’Ordre: A Model

It’s not just randomly coming up with syntax though.

We want a justification for what we are doing
What about normalization? Subject reduction? Other nice properties?
... that’s called a model.

We want a model of the exceptional type theory!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 12 / 44

Mot d’Ordre: A Model

It’s not just randomly coming up with syntax though.

We want a justification for what we are doing
What about normalization? Subject reduction? Other nice properties?

... that’s called a model.

We want a model of the exceptional type theory!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 12 / 44

Mot d’Ordre: A Model

It’s not just randomly coming up with syntax though.

We want a justification for what we are doing
What about normalization? Subject reduction? Other nice properties?
... that’s called a model.

We want a model of the exceptional type theory!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 12 / 44

Kardashian Functors, Anyone?
Semantics of CIC has a fame of being horribly complex.

I won’t lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Pro: Sets!
Con: Sets!

Realizability models: construct programs that respect properties.

Pro: Computational, computer-science friendly.
Con: Not foundational (requires an alien meta-theory), not decidable.

Categorical models: abstract description of type theory.

Pro: Abstract, subsumes the two former ones.
Con: Realizability + very low level, gazillion variants, intrisically typed, static.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 13 / 44

Kardashian Functors, Anyone?
Semantics of CIC has a fame of being horribly complex.

I won’t lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Pro: Sets!
Con: Sets!

Realizability models: construct programs that respect properties.

Pro: Computational, computer-science friendly.
Con: Not foundational (requires an alien meta-theory), not decidable.

Categorical models: abstract description of type theory.

Pro: Abstract, subsumes the two former ones.
Con: Realizability + very low level, gazillion variants, intrisically typed, static.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 13 / 44

Kardashian Functors, Anyone?
Semantics of CIC has a fame of being horribly complex.

I won’t lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Pro: Sets!
Con: Sets!

Realizability models: construct programs that respect properties.

Pro: Computational, computer-science friendly.
Con: Not foundational (requires an alien meta-theory), not decidable.

Categorical models: abstract description of type theory.

Pro: Abstract, subsumes the two former ones.
Con: Realizability + very low level, gazillion variants, intrisically typed, static.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 13 / 44

Kardashian Functors, Anyone?
Semantics of CIC has a fame of being horribly complex.

I won’t lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Pro: Sets!
Con: Sets!

Realizability models: construct programs that respect properties.

Pro: Computational, computer-science friendly.
Con: Not foundational (requires an alien meta-theory), not decidable.

Categorical models: abstract description of type theory.

Pro: Abstract, subsumes the two former ones.
Con: Realizability + very low level, gazillion variants, intrisically typed, static.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 13 / 44

Kardashian Functors, Anyone?
Semantics of CIC has a fame of being horribly complex.

I won’t lie: it is. But part of this fame is nonetheless due to its models.

Set-theoretical models: because Sets are a (crappy) type theory.

Pro: Sets!
Con: Sets!

Realizability models: construct programs that respect properties.

Pro: Computational, computer-science friendly.
Con: Not foundational (requires an alien meta-theory), not decidable.

Categorical models: abstract description of type theory.

Pro: Abstract, subsumes the two former ones.
Con: Realizability + very low level, gazillion variants, intrisically typed, static.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 13 / 44

Curry-Howard Orthodoxy

Instead, let’s look at what Curry-Howard provides in simpler settings.

Logical Interpretations ⇔ Program Translations

On the programming side, implement effects using e.g. the monadic style.
A type transformer T, two combinators, a few equations
Interpret mechanically effectful programs (e.g. in Haskell)

On the logic side, extend expressivity through proof translation.
Double-negation ⇒ classical logic (callcc)
Friedman’s trick ⇒ Markov’s rule (exceptions)
Forcing ⇒ ¬CH (global monotonous cell)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 14 / 44

Curry-Howard Orthodoxy

Instead, let’s look at what Curry-Howard provides in simpler settings.

Logical Interpretations ⇔ Program Translations

On the programming side, implement effects using e.g. the monadic style.
A type transformer T, two combinators, a few equations
Interpret mechanically effectful programs (e.g. in Haskell)

On the logic side, extend expressivity through proof translation.
Double-negation ⇒ classical logic (callcc)
Friedman’s trick ⇒ Markov’s rule (exceptions)
Forcing ⇒ ¬CH (global monotonous cell)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 14 / 44

Curry-Howard Orthodoxy

Instead, let’s look at what Curry-Howard provides in simpler settings.

Logical Interpretations ⇔ Program Translations

On the programming side, implement effects using e.g. the monadic style.
A type transformer T, two combinators, a few equations
Interpret mechanically effectful programs (e.g. in Haskell)

On the logic side, extend expressivity through proof translation.
Double-negation ⇒ classical logic (callcc)
Friedman’s trick ⇒ Markov’s rule (exceptions)
Forcing ⇒ ¬CH (global monotonous cell)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 14 / 44

Syntactic Models

Let us do the same thing with CIC: build syntactic models.

Step 0: Fix a theory T := CIC.

Step 1: Define [·] on the syntax of T and derive [[·]] from it s.t.

⊢T M : A implies ⊢CIC [M] : [[A]]

Step 2: Flip views and actually pose

⊢T M : A ∆
= ⊢CIC [M] : [[A]]

Step 3: Expand T by going down to the CIC assembly language,
implementing new terms given by the [·] translation.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 15 / 44

Syntactic Models

Let us do the same thing with CIC: build syntactic models.

Step 0: Fix a theory T := CIC.

Step 1: Define [·] on the syntax of T and derive [[·]] from it s.t.

⊢T M : A implies ⊢CIC [M] : [[A]]

Step 2: Flip views and actually pose

⊢T M : A ∆
= ⊢CIC [M] : [[A]]

Step 3: Expand T by going down to the CIC assembly language,
implementing new terms given by the [·] translation.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 15 / 44

Syntactic Models

Let us do the same thing with CIC: build syntactic models.

Step 0: Fix a theory T := CIC.

Step 1: Define [·] on the syntax of T and derive [[·]] from it s.t.

⊢T M : A implies ⊢CIC [M] : [[A]]

Step 2: Flip views and actually pose

⊢T M : A ∆
= ⊢CIC [M] : [[A]]

Step 3: Expand T by going down to the CIC assembly language,
implementing new terms given by the [·] translation.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 15 / 44

Syntactic Models

Let us do the same thing with CIC: build syntactic models.

Step 0: Fix a theory T := CIC.

Step 1: Define [·] on the syntax of T and derive [[·]] from it s.t.

⊢T M : A implies ⊢CIC [M] : [[A]]

Step 2: Flip views and actually pose

⊢T M : A ∆
= ⊢CIC [M] : [[A]]

Step 3: Expand T by going down to the CIC assembly language,
implementing new terms given by the [·] translation.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 15 / 44

Syntactic Models

Let us do the same thing with CIC: build syntactic models.

Step 0: Fix a theory T := CIC.

Step 1: Define [·] on the syntax of T and derive [[·]] from it s.t.

⊢T M : A implies ⊢CIC [M] : [[A]]

Step 2: Flip views and actually pose

⊢T M : A ∆
= ⊢CIC [M] : [[A]]

Step 3: Expand T by going down to the CIC assembly language,
implementing new terms given by the [·] translation.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 15 / 44

« CIC, the LLVM of Type Theory »

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 16 / 44

The Exceptional Implementation

Let’s implement the exceptional type theory into CIC!

Source is a CBN theory, so usual monadic encoding won’t work.
We use a variant of our previous weaning translation.
All typing and computations rules mentioned before hold for free.

Let’s call the exceptional type theory TE to disambiguate it from CIC.

Only parameter of the translation: a fixed type of exceptions in the target.

⊢CIC E : □

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 17 / 44

The Exceptional Implementation

Let’s implement the exceptional type theory into CIC!

Source is a CBN theory, so usual monadic encoding won’t work.
We use a variant of our previous weaning translation.
All typing and computations rules mentioned before hold for free.

Let’s call the exceptional type theory TE to disambiguate it from CIC.

Only parameter of the translation: a fixed type of exceptions in the target.

⊢CIC E : □

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 17 / 44

The Exceptional Implementation

Let’s implement the exceptional type theory into CIC!

Source is a CBN theory, so usual monadic encoding won’t work.
We use a variant of our previous weaning translation.
All typing and computations rules mentioned before hold for free.

Let’s call the exceptional type theory TE to disambiguate it from CIC.

Only parameter of the translation: a fixed type of exceptions in the target.

⊢CIC E : □

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 17 / 44

The Exceptional Implementation

Let’s implement the exceptional type theory into CIC!

Source is a CBN theory, so usual monadic encoding won’t work.
We use a variant of our previous weaning translation.
All typing and computations rules mentioned before hold for free.

Let’s call the exceptional type theory TE to disambiguate it from CIC.

Only parameter of the translation: a fixed type of exceptions in the target.

⊢CIC E : □

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 17 / 44

The Exceptional Implementation, Negative case

Intuition: ⊢TE A : □ ⇝ ⊢CIC [A] : ΣA : □.E → A.

Every exceptional type comes with its own implementation of failure!

[[A]] : □ := π1 [A] and [A]∅ : E → [[A]] := π2 [A]

[[Πx : A.B]] ≡ Πx : [[A]]. [[B]]
[Πx : A.B]∅ e ≡ λx : [[A]]. [B]∅ e
[x] ≡ x
[M N] ≡ [M] [N]
[λx : A.M] ≡ λx : [[A]]. [M]

If Γ ⊢CIC M : A then [[Γ]] ⊢CIC [M] : [[A]].

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 18 / 44

The Exceptional Implementation, Negative case

Intuition: ⊢TE A : □ ⇝ ⊢CIC [A] : ΣA : □.E → A.

Every exceptional type comes with its own implementation of failure!

[[A]] : □ := π1 [A] and [A]∅ : E → [[A]] := π2 [A]

[[Πx : A.B]] ≡ Πx : [[A]]. [[B]]
[Πx : A.B]∅ e ≡ λx : [[A]]. [B]∅ e
[x] ≡ x
[M N] ≡ [M] [N]
[λx : A.M] ≡ λx : [[A]]. [M]

If Γ ⊢CIC M : A then [[Γ]] ⊢CIC [M] : [[A]].

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 18 / 44

The Exceptional Implementation, Negative case

Intuition: ⊢TE A : □ ⇝ ⊢CIC [A] : ΣA : □.E → A.

Every exceptional type comes with its own implementation of failure!

[[A]] : □ := π1 [A] and [A]∅ : E → [[A]] := π2 [A]

[[Πx : A.B]] ≡ Πx : [[A]]. [[B]]
[Πx : A.B]∅ e ≡ λx : [[A]]. [B]∅ e
[x] ≡ x
[M N] ≡ [M] [N]
[λx : A.M] ≡ λx : [[A]]. [M]

If Γ ⊢CIC M : A then [[Γ]] ⊢CIC [M] : [[A]].

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 18 / 44

The Exceptional Implementation, Failure

It is straightforward to implement the failure operation.

E : □
raise : ΠA : □.E → A

[E] : ΣA : □.E → A
[E] := (E, λe : E. e)

[raise] : ΠA0 : (ΣA : □.E → A).E → π1 A0

[raise] := π2

Computational rules trivially hold!
[raise (Πx : A.B) e] ≡ [λx : A. raise B e]

≡ ≡

π2 ((Πx : [[A]]. [[B]]), (λ(e : E) (x : [[A]]). π2 [[B]] e)) [e] ≡ λx : [[A]]. π2 [B] [e]

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 19 / 44

The Exceptional Implementation, Failure

It is straightforward to implement the failure operation.

E : □
raise : ΠA : □.E → A

[E] : ΣA : □.E → A
[E] := (E, λe : E. e)

[raise] : ΠA0 : (ΣA : □.E → A).E → π1 A0

[raise] := π2

Computational rules trivially hold!
[raise (Πx : A.B) e] ≡ [λx : A. raise B e]

≡ ≡

π2 ((Πx : [[A]]. [[B]]), (λ(e : E) (x : [[A]]). π2 [[B]] e)) [e] ≡ λx : [[A]]. π2 [B] [e]

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 19 / 44

The Exceptional Implementation, Failure

It is straightforward to implement the failure operation.

E : □
raise : ΠA : □.E → A

[E] : ΣA : □.E → A
[E] := (E, λe : E. e)

[raise] : ΠA0 : (ΣA : □.E → A).E → π1 A0

[raise] := π2

Computational rules trivially hold!
[raise (Πx : A.B) e] ≡ [λx : A. raise B e]

≡ ≡

π2 ((Πx : [[A]]. [[B]]), (λ(e : E) (x : [[A]]). π2 [[B]] e)) [e] ≡ λx : [[A]]. π2 [B] [e]

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 19 / 44

The Exceptional Implementation, Positive case

The really interesting case is the inductive part of CIC.

How to implement [B]∅ : E → [[B]]?

Could pose [[B]] := B and take an arbitrary boolean for [B]∅...

... but that would not play well with computation, e.g. catch.

Worse, what about [⊥]∅ : E → [[⊥]]?

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 20 / 44

The Exceptional Implementation, Positive case

The really interesting case is the inductive part of CIC.

How to implement [B]∅ : E → [[B]]?

Could pose [[B]] := B and take an arbitrary boolean for [B]∅...

... but that would not play well with computation, e.g. catch.

Worse, what about [⊥]∅ : E → [[⊥]]?

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 20 / 44

The Exceptional Implementation, Positive case

The really interesting case is the inductive part of CIC.

How to implement [B]∅ : E → [[B]]?

Could pose [[B]] := B and take an arbitrary boolean for [B]∅...

... but that would not play well with computation, e.g. catch.

Worse, what about [⊥]∅ : E → [[⊥]]?

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 20 / 44

The Exceptional Implementation, Positive case

Very elegant solution: add a default case to every inductive type!

Inductive [[B]] := [true] : [[B]] | [false] : [[B]] | B∅ : E → [[B]]

Pattern-matching is translated pointwise, except for the new case.

[[ΠP : B → □.P true → P false → Πb : B.P b]]

≡ ΠP : [[B]] → [[□]].P [true] → P [false] → Πb : [[B]].P b

If b is [true], use first hypothesis
If b is [false], use second hypothesis
If b is an error B∅ e, reraise e using [P b]∅ e

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 21 / 44

The Exceptional Implementation, Positive case

Very elegant solution: add a default case to every inductive type!

Inductive [[B]] := [true] : [[B]] | [false] : [[B]] | B∅ : E → [[B]]

Pattern-matching is translated pointwise, except for the new case.

[[ΠP : B → □.P true → P false → Πb : B.P b]]

≡ ΠP : [[B]] → [[□]].P [true] → P [false] → Πb : [[B]].P b

If b is [true], use first hypothesis
If b is [false], use second hypothesis
If b is an error B∅ e, reraise e using [P b]∅ e

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 21 / 44

Shadok Logic Strikes Back

Theorem
The exceptional translation interprets all of CIC.

☺ A type theory with effects!
☺ Compiled away to CIC!
☺ Features full conversion
☺ Features full dependent elimination
😖 Ah, yeah, and also, the theory is inconsistent.

It suffices to raise an exception to inhabit any type.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 22 / 44

Shadok Logic Strikes Back

Theorem
The exceptional translation interprets all of CIC.

☺ A type theory with effects!
☺ Compiled away to CIC!
☺ Features full conversion
☺ Features full dependent elimination

😖 Ah, yeah, and also, the theory is inconsistent.

It suffices to raise an exception to inhabit any type.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 22 / 44

Shadok Logic Strikes Back

Theorem
The exceptional translation interprets all of CIC.

☺ A type theory with effects!
☺ Compiled away to CIC!
☺ Features full conversion
☺ Features full dependent elimination

😖 Ah, yeah, and also, the theory is inconsistent.

It suffices to raise an exception to inhabit any type.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 22 / 44

Shadok Logic Strikes Back

Theorem
The exceptional translation interprets all of CIC.

☺ A type theory with effects!
☺ Compiled away to CIC!
☺ Features full conversion
☺ Features full dependent elimination
😖 Ah, yeah, and also, the theory is inconsistent.

It suffices to raise an exception to inhabit any type.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 22 / 44

Consistency: A Social Construct

An Impure Dependently-typed Programming Language
Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)

If ⊢TE M : ⊥, then M ≡ raise ⊥ e for some e : E.

A Safe Target Framework
You can still use the CIC target to prove properties about TE programs!

Cliffhanger
You can prove that a program does not raise uncaught exceptions.

And now for a little ad before the second part of the show!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 23 / 44

Consistency: A Social Construct

An Impure Dependently-typed Programming Language
Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)

If ⊢TE M : ⊥, then M ≡ raise ⊥ e for some e : E.

A Safe Target Framework
You can still use the CIC target to prove properties about TE programs!

Cliffhanger
You can prove that a program does not raise uncaught exceptions.

And now for a little ad before the second part of the show!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 23 / 44

Consistency: A Social Construct

An Impure Dependently-typed Programming Language
Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)

If ⊢TE M : ⊥, then M ≡ raise ⊥ e for some e : E.

A Safe Target Framework
You can still use the CIC target to prove properties about TE programs!

Cliffhanger
You can prove that a program does not raise uncaught exceptions.

And now for a little ad before the second part of the show!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 23 / 44

Consistency: A Social Construct

An Impure Dependently-typed Programming Language
Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)

If ⊢TE M : ⊥, then M ≡ raise ⊥ e for some e : E.

A Safe Target Framework
You can still use the CIC target to prove properties about TE programs!

Cliffhanger
You can prove that a program does not raise uncaught exceptions.

And now for a little ad before the second part of the show!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 23 / 44

Consistency: A Social Construct

An Impure Dependently-typed Programming Language
Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)

If ⊢TE M : ⊥, then M ≡ raise ⊥ e for some e : E.

A Safe Target Framework
You can still use the CIC target to prove properties about TE programs!

Cliffhanger
You can prove that a program does not raise uncaught exceptions.

And now for a little ad before the second part of the show!
P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 23 / 44

Informercial — Did You Know?

The exceptional translation is just a principled Friedman’s A-translation!

As such, it can be used for classical proof extraction.

Informative double-negation
[[¬¬A]] ∼= ([[A]] → E) → E

First-order purification
If P is a Σ0

1 type, then ⊢CIC [[P]] ↔ P + E.

Friedman’s Trick in CIC
If P and Q are Σ0

1 types, ⊢CIC Πp : P.¬¬Q implies ⊢CIC Πp : P.Q.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 24 / 44

Informercial — Did You Know?

The exceptional translation is just a principled Friedman’s A-translation!

As such, it can be used for classical proof extraction.

Informative double-negation
[[¬¬A]] ∼= ([[A]] → E) → E

First-order purification
If P is a Σ0

1 type, then ⊢CIC [[P]] ↔ P + E.

Friedman’s Trick in CIC
If P and Q are Σ0

1 types, ⊢CIC Πp : P.¬¬Q implies ⊢CIC Πp : P.Q.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 24 / 44

Informercial — Did You Know?

The exceptional translation is just a principled Friedman’s A-translation!

As such, it can be used for classical proof extraction.

Informative double-negation
[[¬¬A]] ∼= ([[A]] → E) → E

First-order purification
If P is a Σ0

1 type, then ⊢CIC [[P]] ↔ P + E.

Friedman’s Trick in CIC
If P and Q are Σ0

1 types, ⊢CIC Πp : P.¬¬Q implies ⊢CIC Πp : P.Q.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 24 / 44

Informercial — Did You Know?

The exceptional translation is just a principled Friedman’s A-translation!

As such, it can be used for classical proof extraction.

Informative double-negation
[[¬¬A]] ∼= ([[A]] → E) → E

First-order purification
If P is a Σ0

1 type, then ⊢CIC [[P]] ↔ P + E.

Friedman’s Trick in CIC
If P and Q are Σ0

1 types, ⊢CIC Πp : P.¬¬Q implies ⊢CIC Πp : P.Q.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 24 / 44

Part II

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 25 / 44

If You Joined the Talk Recently

The exceptional type theory is logically inconsistent!

Cliffhanger (cont.)
You can prove that a program does not raise uncaught exceptions.

Let’s call valid a program in TE that “does not raise exceptions”.

For instance,
there is no valid proof of ⊥
the only valid booleans are true and false
a function is valid if it produces a valid result out of a valid argument

Validity is a type-directed notion!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 26 / 44

If You Joined the Talk Recently

The exceptional type theory is logically inconsistent!

Cliffhanger (cont.)
You can prove that a program does not raise uncaught exceptions.

Let’s call valid a program in TE that “does not raise exceptions”.

For instance,
there is no valid proof of ⊥
the only valid booleans are true and false
a function is valid if it produces a valid result out of a valid argument

Validity is a type-directed notion!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 26 / 44

If You Joined the Talk Recently

The exceptional type theory is logically inconsistent!

Cliffhanger (cont.)
You can prove that a program does not raise uncaught exceptions.

Let’s call valid a program in TE that “does not raise exceptions”.

For instance,
there is no valid proof of ⊥
the only valid booleans are true and false
a function is valid if it produces a valid result out of a valid argument

Validity is a type-directed notion!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 26 / 44

The Curry-Howard-Shadok Correspondence
Let’s locally write M ⊩ A if M is valid at A.

f ⊩ A → B ≡ ∀x : [[A]]. x ⊩ A → f x ⊩ B

What? That’s just logical relations.

Come on. That’s intuitionistic realizability.

Fools ! That’s parametricity.

Zo!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 27 / 44

The Curry-Howard-Shadok Correspondence
Let’s locally write M ⊩ A if M is valid at A.

f ⊩ A → B ≡ ∀x : [[A]]. x ⊩ A → f x ⊩ B

What? That’s just logical relations.

Come on. That’s intuitionistic realizability.

Fools ! That’s parametricity.

Zo!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 27 / 44

The Curry-Howard-Shadok Correspondence
Let’s locally write M ⊩ A if M is valid at A.

f ⊩ A → B ≡ ∀x : [[A]]. x ⊩ A → f x ⊩ B

What? That’s just logical relations.

Come on. That’s intuitionistic realizability.

Fools ! That’s parametricity.

Zo!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 27 / 44

The Curry-Howard-Shadok Correspondence
Let’s locally write M ⊩ A if M is valid at A.

f ⊩ A → B ≡ ∀x : [[A]]. x ⊩ A → f x ⊩ B

What? That’s just logical relations.

Come on. That’s intuitionistic realizability.

Fools ! That’s parametricity.

Zo!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 27 / 44

The Curry-Howard-Shadok Correspondence
Let’s locally write M ⊩ A if M is valid at A.

f ⊩ A → B ≡ ∀x : [[A]]. x ⊩ A → f x ⊩ B

What? That’s just logical relations.

Come on. That’s intuitionistic realizability.

Fools ! That’s parametricity.

Zo!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 27 / 44

The Curry-Howard-Shadok Correspondence
Let’s locally write M ⊩ A if M is valid at A.

f ⊩ A → B ≡ ∀x : [[A]]. x ⊩ A → f x ⊩ B

What? That’s just logical relations.

Come on. That’s intuitionistic realizability.

Fools ! That’s parametricity.

Zo!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 27 / 44

Making Everybody Agree

It’s actually folklore that these techniques are essentially the same.

And there is already a parametricity translation for CIC! (Bernardy-Lasson)

We just have to adapt it to our exceptional translation.

Idea:

From ⊢ M : A produce two sequents

⊢CIC [M] : [[A]]

+

⊢CIC [M]ε : [[A]]ε [M]

where [[A]]ε : [[A]] → □ is the validity predicate.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 28 / 44

Making Everybody Agree

It’s actually folklore that these techniques are essentially the same.

And there is already a parametricity translation for CIC! (Bernardy-Lasson)

We just have to adapt it to our exceptional translation.

Idea:

From ⊢ M : A produce two sequents

⊢CIC [M] : [[A]]

+

⊢CIC [M]ε : [[A]]ε [M]

where [[A]]ε : [[A]] → □ is the validity predicate.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 28 / 44

Making Everybody Agree

It’s actually folklore that these techniques are essentially the same.

And there is already a parametricity translation for CIC! (Bernardy-Lasson)

We just have to adapt it to our exceptional translation.

Idea:

From ⊢ M : A produce two sequents

⊢CIC [M] : [[A]]

+

⊢CIC [M]ε : [[A]]ε [M]

where [[A]]ε : [[A]] → □ is the validity predicate.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 28 / 44

Parametric Exceptional Translation (Sketch)

Most notably,

[[Πx : A.B]]ε f ≡ Π(x : [[A]]) (xε : [[A]]ε x). [[B]]ε (f x)

[[B]]ε b ∼= b = [true] + b = [false]

[[⊥]]ε s ∼= ⊥

Every pure term is now automatically parametric.

If Γ ⊢CIC M : A then [[Γ]]ε ⊢CIC [M]ε : [[A]]ε [M].

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 29 / 44

Parametric Exceptional Translation (Sketch)

Most notably,

[[Πx : A.B]]ε f ≡ Π(x : [[A]]) (xε : [[A]]ε x). [[B]]ε (f x)

[[B]]ε b ∼= b = [true] + b = [false]

[[⊥]]ε s ∼= ⊥

Every pure term is now automatically parametric.

If Γ ⊢CIC M : A then [[Γ]]ε ⊢CIC [M]ε : [[A]]ε [M].

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 29 / 44

A Few Nice Results

Let’s call T p
E the resulting theory. It inherits a lot from CIC!

Theorem (Consistency)
T p
E is consistent.

Theorem (Canonicity)
T p
E enjoys canonicity, i.e if ⊢T p

E
M : N then M⇝∗ n̄ ∈ N̄.

Theorem (Syntax)
T p
E has decidable type-checking, strong normalization and whatnot.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 30 / 44

What If There Were No Cake?

Bernardy-Lasson parametricity is a conservative extension of CIC...

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 31 / 44

What If There Were No Cake?

Bernardy-Lasson parametricity is a conservative extension of CIC...

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 31 / 44

What If There Were No Cake?

Bernardy-Lasson parametricity is a conservative extension of CIC...

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 31 / 44

Less Is More

Spoiler
T p
E is not a conservative extension of CIC.

Intuitively,
raising uncaught exceptions is forbidden in T p

E
... but you can still raise them locally
... as long as you prove they don’t escape!

TE is the unsafe Coq fragment, and T p
E a semantical layer atop of it.

Actually T p
E is the embodiement of Kreisel modified realizability in CIC.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 32 / 44

Less Is More

Spoiler
T p
E is not a conservative extension of CIC.

Intuitively,
raising uncaught exceptions is forbidden in T p

E

... but you can still raise them locally

... as long as you prove they don’t escape!

TE is the unsafe Coq fragment, and T p
E a semantical layer atop of it.

Actually T p
E is the embodiement of Kreisel modified realizability in CIC.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 32 / 44

Less Is More

Spoiler
T p
E is not a conservative extension of CIC.

Intuitively,
raising uncaught exceptions is forbidden in T p

E
... but you can still raise them locally
... as long as you prove they don’t escape!

TE is the unsafe Coq fragment, and T p
E a semantical layer atop of it.

Actually T p
E is the embodiement of Kreisel modified realizability in CIC.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 32 / 44

Less Is More

Spoiler
T p
E is not a conservative extension of CIC.

Intuitively,
raising uncaught exceptions is forbidden in T p

E
... but you can still raise them locally
... as long as you prove they don’t escape!

TE is the unsafe Coq fragment, and T p
E a semantical layer atop of it.

Actually T p
E is the embodiement of Kreisel modified realizability in CIC.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 32 / 44

Less Is More

Spoiler
T p
E is not a conservative extension of CIC.

Intuitively,
raising uncaught exceptions is forbidden in T p

E
... but you can still raise them locally
... as long as you prove they don’t escape!

TE is the unsafe Coq fragment, and T p
E a semantical layer atop of it.

Actually T p
E is the embodiement of Kreisel modified realizability in CIC.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 32 / 44

Explaining the Analogy

Kreisel realizability T p
E

Source theory HA or HAω CIC

Programming language System T TE (“unsafe Coq”)

Logical meta-theory HAω CIC

Kreisel realizability extends arithmetic with essentially two principles.
ACN : (∀n : N. ∃m : N.P (m,n)) → ∃f : N → N.∀n : N.P (n, f n)
IP : (¬A → ∃n : N.P n) → ∃n : N.¬A → P n

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 33 / 44

Explaining the Analogy

Kreisel realizability T p
E

Source theory HA or HAω CIC

Programming language System T TE (“unsafe Coq”)

Logical meta-theory HAω CIC

Kreisel realizability extends arithmetic with essentially two principles.
ACN : (∀n : N. ∃m : N.P (m,n)) → ∃f : N → N.∀n : N.P (n, f n)
IP : (¬A → ∃n : N.P n) → ∃n : N.¬A → P n

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 33 / 44

Choice

ACN : (∀n : N. ∃m : N.P (m,n)) → ∃f : N → N.∀n : N.P (n, f n)

Not much to say here.

In Kreisel realizability, ACN is a consequence of canonicity of System T.

In T p
E , ACN is a consequence of dependent elimination.

The latter is in turn meta-theoretically justified by canonicity.

In both cases, choice is built-in and a consequence of canonicity.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 34 / 44

Choice

ACN : (∀n : N. ∃m : N.P (m,n)) → ∃f : N → N.∀n : N.P (n, f n)

Not much to say here.

In Kreisel realizability, ACN is a consequence of canonicity of System T.

In T p
E , ACN is a consequence of dependent elimination.

The latter is in turn meta-theoretically justified by canonicity.

In both cases, choice is built-in and a consequence of canonicity.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 34 / 44

Choice

ACN : (∀n : N. ∃m : N.P (m,n)) → ∃f : N → N.∀n : N.P (n, f n)

Not much to say here.

In Kreisel realizability, ACN is a consequence of canonicity of System T.

In T p
E , ACN is a consequence of dependent elimination.

The latter is in turn meta-theoretically justified by canonicity.

In both cases, choice is built-in and a consequence of canonicity.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 34 / 44

Independence of Premises

IP : (¬A → ∃n : N.P n) → ∃n : N.¬A → P n

That one is interesting! A unforeseen consequence of a subtle bug.

Kreisel’s bug
Every type of realizers is inhabited. In particular, [[⊥]]KR ≡ N.

The realizer of IP critically relies on that!

Assuming System T had an empty type 0, and setting [[⊥]]KR ≡ 0

KR is still a model of HA
KR still validates ACN

KR doesn’t validate IP anymore

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 35 / 44

Independence of Premises

IP : (¬A → ∃n : N.P n) → ∃n : N.¬A → P n

That one is interesting! A unforeseen consequence of a subtle bug.

Kreisel’s bug
Every type of realizers is inhabited. In particular, [[⊥]]KR ≡ N.

The realizer of IP critically relies on that!

Assuming System T had an empty type 0, and setting [[⊥]]KR ≡ 0

KR is still a model of HA
KR still validates ACN

KR doesn’t validate IP anymore

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 35 / 44

Volem Independència

IP : (¬A → ∃n : N.P n) → ∃n : N.¬A → P n

Theorem (CIC + IP)
T p
E validates IP, owing to the fact that in TE, every type is inhabited.

Proof (sketch).
In TE, build a term ip : IP

Given f : ¬A → Σn : N.P n, apply it to raise (¬A) e.
If the returned integer is pure, return it with the associated proof.
Otherwise, return a dummy integer and failing proof.

Easy to show that ip is actually valid in T p
E .

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 36 / 44

Volem Independència

IP : (¬A → ∃n : N.P n) → ∃n : N.¬A → P n

Theorem (CIC + IP)
T p
E validates IP, owing to the fact that in TE, every type is inhabited.

Proof (sketch).
In TE, build a term ip : IP

Given f : ¬A → Σn : N.P n, apply it to raise (¬A) e.
If the returned integer is pure, return it with the associated proof.
Otherwise, return a dummy integer and failing proof.

Easy to show that ip is actually valid in T p
E .

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 36 / 44

Another Result for Free
Recall Markov’s principle:

ΠP : N → B.¬¬(Σn : N.P n = true) → Σn : N.P n = true (MP)

Kreisel’s Razor
Pick two out of three: {canonicity, IP, MP}.

IP + MP ⇒ ΠP : N → B.Σn : N.Πm : N.P m = true → P n = true

Together with canonicity, this solves the halting problem.

Corollary
̸⊢T p

E
MP and thus ̸⊢CIC MP.

(This was proved recently by Coquand-Mannaa, although in a completely different way.)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 37 / 44

Another Result for Free
Recall Markov’s principle:

ΠP : N → B.¬¬(Σn : N.P n = true) → Σn : N.P n = true (MP)

Kreisel’s Razor
Pick two out of three: {canonicity, IP, MP}.

IP + MP ⇒ ΠP : N → B.Σn : N.Πm : N.P m = true → P n = true

Together with canonicity, this solves the halting problem.

Corollary
̸⊢T p

E
MP and thus ̸⊢CIC MP.

(This was proved recently by Coquand-Mannaa, although in a completely different way.)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 37 / 44

Another Result for Free
Recall Markov’s principle:

ΠP : N → B.¬¬(Σn : N.P n = true) → Σn : N.P n = true (MP)

Kreisel’s Razor
Pick two out of three: {canonicity, IP, MP}.

IP + MP ⇒ ΠP : N → B.Σn : N.Πm : N.P m = true → P n = true

Together with canonicity, this solves the halting problem.

Corollary
̸⊢T p

E
MP and thus ̸⊢CIC MP.

(This was proved recently by Coquand-Mannaa, although in a completely different way.)

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 37 / 44

Another Result for Free
Recall Markov’s principle:

ΠP : N → B.¬¬(Σn : N.P n = true) → Σn : N.P n = true (MP)

Kreisel’s Razor
Pick two out of three: {canonicity, IP, MP}.

IP + MP ⇒ ΠP : N → B.Σn : N.Πm : N.P m = true → P n = true

Together with canonicity, this solves the halting problem.

Corollary
̸⊢T p

E
MP and thus ̸⊢CIC MP.

(This was proved recently by Coquand-Mannaa, although in a completely different way.)
P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 37 / 44

Function Intensionality

Another interesting consequence that is similar to what happens in KR.

T p
E satisfies definitional η-expansion: λx : A.M x ≡ M.

But it violates function extensionality!

⊢T p
E
Πi : 1. i = tt and ⊢T p

E
(λi : 1. i) ̸= (λi : 1. tt)

The reason is that there are invalid proofs of 1.

You cannot build them, but they exists as phantom arguments.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 38 / 44

Function Intensionality

Another interesting consequence that is similar to what happens in KR.

T p
E satisfies definitional η-expansion: λx : A.M x ≡ M.

But it violates function extensionality!

⊢T p
E
Πi : 1. i = tt and ⊢T p

E
(λi : 1. i) ̸= (λi : 1. tt)

The reason is that there are invalid proofs of 1.

You cannot build them, but they exists as phantom arguments.

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 38 / 44

What Else?

What kind of similar horrors can we do in T p
E ?

I don’t know!
But there are probably lessons to be taken from realizability
I’m probably pissing off both HoTT and PRL zealots by now

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 39 / 44

Get You A Larger Coq, Today!

We implemented TE and T p
E in Coq in a plugin.

https://github.com/CoqHott/exceptional-tt

Allows to add exceptions to Coq just today.
Compile effectful terms on the fly.
Allows to reason about them in Coq.
Write mind-blowing low-level code!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 40 / 44

https://github.com/CoqHott/exceptional-tt

If You Were Sleeping During The Talk

TE, a type theory that allows failure!

Inconsistent as a logical theory
A dependently-typed effectful programming language
Can still be used for proof extraction like Friedman’s A-translation

T p
E , a type theory that allows local failure!

A safe layer atop TE that enforces consistency
Strict superset of CIC: proves IP, ¬funext, disproves MP

Both of them justified by purely syntactical means!

“The more it fails, the more likely it will eventually succeed.”

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 41 / 44

If You Were Sleeping During The Talk

TE, a type theory that allows failure!

Inconsistent as a logical theory
A dependently-typed effectful programming language
Can still be used for proof extraction like Friedman’s A-translation

T p
E , a type theory that allows local failure!

A safe layer atop TE that enforces consistency
Strict superset of CIC: proves IP, ¬funext, disproves MP

Both of them justified by purely syntactical means!

“The more it fails, the more likely it will eventually succeed.”

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 41 / 44

If You Were Sleeping During The Talk

TE, a type theory that allows failure!

Inconsistent as a logical theory
A dependently-typed effectful programming language
Can still be used for proof extraction like Friedman’s A-translation

T p
E , a type theory that allows local failure!

A safe layer atop TE that enforces consistency
Strict superset of CIC: proves IP, ¬funext, disproves MP

Both of them justified by purely syntactical means!

“The more it fails, the more likely it will eventually succeed.”

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 41 / 44

If You Were Sleeping During The Talk

TE, a type theory that allows failure!

Inconsistent as a logical theory
A dependently-typed effectful programming language
Can still be used for proof extraction like Friedman’s A-translation

T p
E , a type theory that allows local failure!

A safe layer atop TE that enforces consistency
Strict superset of CIC: proves IP, ¬funext, disproves MP

Both of them justified by purely syntactical means!

“The more it fails, the more likely it will eventually succeed.”
P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 41 / 44

TODO When I Have a Permanent Position

TE looks like a good intermediate language for model building
The Calculus of Shadok Constructions
Potential applications to Gradual Typing?
Syntactic models are super cool! Let’s write more!

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 42 / 44

Food For Thought

It seems you need to have a name starting with K to name a realizability.

Kleene
Kreisel
Krivine

P.-M. Pédrot (MPI-SWS) Failure is Not an Option 22/02/2018 44 / 44

